Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences
نویسندگان
چکیده
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.
منابع مشابه
Motion perception and prediction
The perception of dynamic spatio-temporal patterns, the perception of motion, is a fundamental part of visual cognition. In order to understand the principles behind these biological processes better, we analyze and construct a representation of dynamic spatio-temporal information on different levels of abstraction. Psychophysical experiments have shown that a spatio-temporal memory for early v...
متن کاملمعرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی
In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...
متن کاملSupervised learning on graphs of spatio-temporal similarity in satellite image sequences
High resolution satellite image sequences are multidimensional signals composed of spatiotemporal patterns associated to numerous and various phenomena. Bayesian methods have been previously proposed in [8] to code the information contained in satellite image sequences in a graph representation using Bayesian methods. Based on such a representation, this paper further presents a supervised lear...
متن کاملSpatio-temporal Mask Learning: Application to Speech Recognition
In this paper, we describe the spatio-temporall map which is an original algorithm to learn and recognize dynamic patterns represented by sequences. This work is slanted toward an internal and explicit representation of time which seems to be neuro-biologically relevant. The map involves units with diierent kinds of links: feed-forward connections, intra-map connections and inter-map connection...
متن کاملA PRACTICAL APPROACH TO REAL-TIME DYNAMIC BACKGROUND GENERATION BASED ON A TEMPORAL MEDIAN FILTER
In many computer vision applications, segmenting and extraction of moving objects in video sequences is an essential task. Background subtraction, by which each input image is subtracted from the reference image, has often been used for this purpose. In this paper, we offer a novel background-subtraction technique for real-time dynamic background generation using color images that are taken fro...
متن کامل